La carte électronique ARDUINO

Journée du Libre Sarrebourg, le 25 novembre 2017 enunclic-cappel.fr - blog.lkiefer.org

Arduino, c'est quoi?

- Des marques
- Des cartes électroniques (3)
- Un logiciel ()
- Des utilisateurs => Blogs, forums, vidéos
- Un écosystème => Clones, modules, composants
- Des idées, des projets

Une carte Électronique ?

Protections

Une collection de cartes

Une carte libre

Open Hardware Designs sous licence Creative Commons by-sa

open hardware

Une carte libre

Logiciel Libre Arduino IDE GNU General Public Licence

Pour quoi faire ? La technique :

Sorties Numériques

Sorties PWM

Entrées Numériques

Entrées analogiques

Pour quoi faire? Table LED

Pour quoi faire? Station Météo

Pour quoi faire? De la musique

Pour quoi faire? Des tissus intelligents

Pour quoi faire? Dessiner sur du verre

Pour quoi faire? Des robots

Pour quoi faire? Des imprimantes 3D

Qui est derrière Arduino?

Arduino - Genuino arduino.cc Créé en Europe, Italie Entreprise internationale aux USA

Cartes Originales: Marque Arduino ou Genuino Logo Arduino Couleur bleue / Bleu canard Clones: Freeduino, SainSmart, AVR-Duino... Logo Arduino Couleur bleue / Bleu canard

Attention aux contrefaçons

Integrated Development Environment Environnement de développement intégré

- Écrire des programmes / C++ / graphique
- Gérer les bibliothèques
- Compiler les programmes
- Envoyer les programmes sur les cartes
- Communiquer avec les cartes

Dans la pratique, Utiliser Arduino c'est :

Rédiger un programme

- Compiler et envoyer le programme sur la carte
- Assembler la carte et les composants sur une «Breadboard»
- Relier les composants avec des câbles
- Alimenter le montage
- Montage final: souder les composants sur une «Perfboard»

- Sur votre poste,
 lancez le logiciel
 Arduino IDE
- Un programme par défaut apparaît

```
void setup() {
   // put your setup code here, to run once:
   // code à exécuter une seule fois
}
```

void loop() {
 // put your main code here, to run repeatedly:
 // code principal, répêté en boucle indéfiniment
}

- Sur votre poste,
 lancez le logiciel
 Arduino IDE
- Un programme par défaut apparaît

}

```
void setup() {
   // put your setup code here, to run once:
   // code à exécuter une seule fois
}
```

```
void loop() {
   // put your main code here, to run repeatedly:
   // code principal, répêté en boucle indéfiniment
```

- Sur votre poste,
 lancez le logiciel
 Arduino IDE
- Un programme par défaut apparaît

}

```
void setup() {
   // put your setup code here, to run once:
   // code à exécuter une seule fois
}
```

```
void loop() {
    // put your main code here, to run repeatedly:
    // code principal, répêté en boucle indéfiniment
```

- Allez dans le menu Fichier > Exemples
 >01.Basics > Blink
- Une nouvelle fenêtre apparaît, avec un programme d'exemple
- Brancher le montage sur l'ordinateur (USB)
- Configurer le logiciel Arduino:
 - Outils > Port > ttyUSB0
 - Outils > Type de carte > Arduino Nano

void setup() {
 // Configurer la broche LED_BUILTIN en sortie.
 pinMode(LED_BUILTIN, OUTPUT);

void loop() {
 // On envoie une valeur haute
 digitalWrite(LED_BUILTIN, HIGH);
 // On attend 1 seconde
 delay(1000);
 // On envoie une valeur basse
 digitalWrite(LED_BUILTIN, LOW);
 // On attend une seconde
 delay(1000);

void setup() {
 // Configurer la broche LED_BUILTIN en sortie.
 pinMode(2, OUTPUT);
}
void loop() {
 // On envoie une valeur haute

// On envoie une valeur haute
digitalWrite(2, HIGH);
// On attend 1 seconde
delay(1000);
// On envoie une valeur basse
digitalWrite(2, LOW);
// On attend une seconde
delay(1000);

On souhaite maintenant faire clignoter les leds les unes après les autres. Savez-vous comment faire?

Voici comment fonctionne le programme actuel. Basez-vous sur ce

code pour la suite

Allumer la LED 2 Attendre 1 seconde Éteindre la LED 2 Attendre 1 seconde

Il faudra coder cela dans la boucle loop()

N'oubliez pas de configurer les autres LEDs en sortie dans la partie setup() Allumer la LED 2 Attendre 1 seconde Éteindre la LED 2

Allumer la LED 3 Attendre 1 seconde Éteindre la LED3

Allumer la LED 4 Attendre 1 seconde Éteindre la LED4

....

Vous devriez avoir quelque chose comme ça:

```
void setup() {
  pinMode(2, OUTPUT);
  pinMode(3, OUTPUT);
  pinMode(4, OUTPUT);
  pinMode(5, OUTPUT);
  pinMode(6, OUTPUT);
}
void loop() {
 digitalWrite(2, HIGH);
  delay(1000);
  digitalWrite(2, LOW);
```

digitalWrite(3, HIGH); delay(1000); digitalWrite(3, LOW);

digitalWrite(4, HIGH); delay(1000); digitalWrite(4, LOW);

// Et pareil pour LED 5 et LED 6

- Allez dans le menu Fichier > Carnet de croquis > Atelier
- Téléversez le programme sur la carte
- Le programme utilise:
 - les sorties numériques (LEDs), Entrées numériques (Bouton), Entrée analogique (Photorésistance)
 - les boucles for(), des conditions if(), des variables (i, luminosite), du port série.

Description du programme:

Lors de l'appui sur le bouton, une certaine quantité de LEDs s'allument en fonction de la luminosité mesurée par la photorésistance.

Les valeurs mesurées sont envoyées à l'ordinateur par le port série.

Projets personnels

- Glockenspiel: instrument de musique automatisé
- Lampe d'ambiance animée
- Contrôleur de lecteur audio
- Imprimante 3D

Pour apprendre

- http://zestedesavoir.com / http://eskimon.fr
- http://playground.arduino.cc/French/Reference
- http://forum.arduino.cc/
- Kit Arduino : carte + cables + breadboard + LEDs + Résistances + boutons + afficheurs + servos ... < 20€
- Amazon Aliexpress Gearbest

Licences des médias

Table LED cc by Windell Oskay https://www.flickr.com/photos/oskay/121705244/in/photostream/

Auto Squiggler landscape cc by-sa Patrick Dinnen https://www.flickr.com/photos/pdinnen/14361133625/

Weather Widget cc by David Mellis https://www.flickr.com/photos/mellis/16317551360/

Rube-Goldberg Arduino-based xylophone-- Version -1 cc by fdecomite https://www.flickr.com/photos/fdecomite/8443261903/

fabric.jpg - cc by-sa CRUSTINA! Best bud sweater https://www.flickr.com/photos/crustina/8760362694/

robot.jpg cc by-sa Fabrice Florin Robot World Prototypes https://www.flickr.com/photos/fabola/36507004581/in/photostream/

cc by dvdgmz RepRap https://www.flickr.com/photos/dvdgmz/8200736050/in/photostream/ Images cliparts Domaine public: http://openclipart.org

Dessin du montage pour l'atelier: Réalisé avec Fritzing par Ludovic Kiefer CC by-sa

Photos des Cartes Arduino CC by-sa © Arduino

Arduino et Genuino sont des marques déposées Le logo Arduino est une marque déposée Ce document est rédigé par un passionné qui n'est aucunement lié à Arduino, et sans leur aide, en respectant l'utilisation de leur marque.

Réalisé grâce à: LibreOffice, GIMP, Imagemagick

Auteur de la présentation: Ludovic Kiefer Vous pouvez réutiliser cette présentation selon les termes de la licence Creative Commons by-sa

